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On the basis of analyticity alone it is shown that in the high-energy limit the partial-wave amplitude 
ai(s) for l>const. ln2s do not contribute substantially to the scattering amplitude for finite angles. For an 
angle depending upon s this result can be extended to show that the contribution to the scattering amplitude 
T[_s, cos0(V)] from ai(s) for l>const. ln2Vsin0(s) is smaller than any power of s. Here ^ and 0 are the square 
of the energy and the scattering angle in the center-of-mass system. Classically, this means that a bombard
ing particle whose impact parameter is larger than the shrinking quantity const. ln2s/s112 sin0(^) cannot be 
appreciably scattered through an angle 6(s). I t is necessary to use the unitarity condition only when this 
result is used to put an upper bound on T\js, cos0(s)]. Here T(s, cos0) is assumed to be analytic as a function 
of cos0 in an ^-independent complex neighborhood of the real segment (—1, 1) except for its intersection 
with the cuts from oo to x(s) and from — x(s) to — °o, x(s) being an arbitrary function with x(s)>l. Finally 
the forward and backward peaks are discussed and it is proved that the right- (left-) hand cut contributes 
only to the forward (backward) peak and not to the backward (forward) peak. 

I. INTRODUCTION AND STATEMENT OF RESULTS where 

IT is well known that analyticity and unitarity impose 
rather strong restriction on the high-energy behavior 

of scattering amplitude. Recently, Kinoshita, Loeffel, 
and Martin1 have found that the scattering amplitude 
T(s, cos0) for scalar particles satisfies the inequality 

his)-
}-f 
2J_! 

dzPi(z)T(s,z cos0o) • (4) 

From the analyticity of T(s,z) in the ellipse, we have3 

| b 10) | < const.^11 sec0o+ tan0o I ~
l . (5) 

| T(s, cos0) | < const. ln3/2 >̂ (1) We shall decompose T(s,z) into two parts T'(s,z) and 
T(s,z)-T'(syz) with 

for sufficiently large s when c o s 0 ^ ± l . Here s and 0 are 
the square of the center-of-mass energy and the center- J° 
of-mass scattering angle, respectively. This inequality l W ^ = ^2l+1)biWpiWcose0). (6) 
has great interest since it implies that the differential 
cross section for finite angle scattering must be bounded From the inequality (5) we see that for some N such that 
by 

Ar/dB<const. ln ty*, (2) l*> (N+Ni) W m I s e c 0 o + tan0o | , (7) 

which decreases rapidly as s increases. The inequality 
(1) holds because, for large angular momentum /, the 
partial-wave amplitude at(s) is a slowly varying func
tion of / and therefore, for finite angles, the contribu
tions from successive partial waves tend to cancel. I t 
seems reasonable that for a finite angle 0o the remaining 
contribution from at(s) to T(s, cos0o) comes only from 
ai(s) with small /. 

Before treating the general proof we shall give a 
simple nonrigorous derivation of the result. We assume2 

that T(s, cos0) is analytic in an ellipse in the complex 
cos0 with foci at ±cos0o and with a semimajor axis of 
length 1 and that T(s, cos0) is bounded by sNl on this 
ellipse, where iVi is some positive number. Now consider 
the following Legendre expansion (we put cos0=s). 

T(s,z)= E (2l+l)bi(s)Pi(z/co*0o), (3) 

* This work supported by the U. S. Atomic Energy Commission. 
f On leave of absence from The Department of Physics, Osaka 

University, Osaka, Japan. 
1 T. Kinoshita, J. J. Loeffel, and A. Martin, Phys. Rev. Letters 

10, 460 (1963), hereafter referred to as KLM. 
2 This assumption is weaker than that of KLM. 

T(s,z) — T'(s,z) is smaller than s~N for cos0o^ z^ — cos0o. 
Therefore, by choosing U and N sufficiently large, we 
can say that only T'(s,z) contributes to T(s,z) in 
cos0o^s^ — cos0o. Even when Tf(s,z) is re-expressed in 
the usual partial-wave expansion, coefficients for 1>U 
will still be zero since T'(syz) is just a polynomial of 
order k. Thus, the scattering amplitude for a finite 
angle can be expressed to arbitrary accuracy with the 
partial waves whose angular momenta I are smaller than 
(N+Ni) mVm|sec0o+tan0o|. Thus it will be expected 
that for finite angle scattering the amplitude has no 
contribution from the partial waves for angular mo
menta larger than (N+Ni) hu/ln|sec$o+tan0o|. How
ever, the above discussion is not conclusive because we 
cannot prove that the coefficients of the usual partial-
wave expansion of T(s,z) — T'(s,z), for angular momenta 
smaller than (N+Ni) Iny/ln|sec0o+tan0o| are equal to 
zero. At this stage it should be noted that we have not 
used unitarity. 

The purpose of this paper is to prove the above stated 
expectation. Before entering upon the details of the 
proof, we want to discuss the procedure. I t would be 

3 O. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961). 
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sufficient to show that we can choose constant c in such 
a way that \T"(s,z)\<s~N for sufficiently large N, 
where T"(s,z) is 

T"(*,*)= £ (2/+l)a i (*)Pi(s) . (8) 
Z=c Ins 

Such a proof is impossible,4 however, since we do not 
expect that ai(s) for l>c Ins is equal to zero. But for a 
finite angle scattering amplitude, we expect the con
tribution from ai(s) for l>clns to cancel each other. 
The discontinuity in the division in the definition of 
T" (s,z) at a certain / will have the result that the lowest 
terms will not be cancelled, no matter how large the 
constant c. This is just a mathematical difficulty, there
fore we make a less abrupt division by introducing a 
slowly varying function fi(s) in the division. fi(s) is 
characterized by the properties: 

(1) fi(s) is a monotonically decreasing function of /, 

(2) 1 1 - / ^ ) | o - * 2 for l<lu (9) 

(3) \fi(s)\<s~N* for l>l2j (10) 

where N% and N3 are arbitrarily large numbers. Using 
fi(s) the summation for T(s,z) is divided into an upper 
part 

r « M = t (21+1)^(3)11-fl(s)-]pl(z) ( i i ) 

and a lower part Tfoz) — Tu(s,z). We now have to show 

\Tu(s,z)\<srN (12) 

for cos0o^2^ — cos0o and arbitrarily large N. 
I t will be convenient to assume a particular fi(s) 

with the above properties: 

r / o : ln 2An^ l n s 

/,(*) = | ^ l - e x p ( - - — j j > (13) 

where a and £ are some positive adjustable parameters. 
We can easily see that fi(s) satisfies the property (2) 
and (3) with 

li = mlns and / 2 =w / ln 2 ^ , (14) 

provided that 
a>mN2, (15) 

and 
- 0 l n [ l - e x p ( - « / < ) ] >7V"3. (16) 

The proof of the inequality (12) is now our main task. 
Another choice of fi(s) might result in a smaller h than 
Eq. (14) for the same N, N2, and 2V3. But, at least, we 
can conclude that partial waves with5 l>mf In2,? do not 

4 We cannot apply the proof in Sec. I I to T"(s,z) since the Mz for 
Gu"(s,z) of T"{s,z) depends on the constant c and because of this 
dependence we cannot make the Mi for Gu" (s,z) small. 

6 The reason for the appearance of the factor ln2s instead of Ins 
which might seem more reasonable is the very severe condition in 
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contribute to finite angle scattering. Classically this 
result means that bombarding particles whose impact 
parameters are larger than m' \n2s/s1/2 cannot be scat
tered by finite angles but only into the forward and 
backward peaks. 

For the proof of the inequality (12) we shall make use 
of the analyticity condition alone. In Sec. I I , we shall 
accomplish the proof of the inequality (12) by requiring 
as the analyticity condition full analyticity deduced 
from the Mandelstam representation. However, as will 
be shown in Sec. I l l , a proof with weaker analyticity 
assumption can be given. A sufficient assumption is that 
T(s,z) be analytic in a domain D. D is an ^-independent 
complex neighborhood of the real segment (—1, 1) ex
cept for its intersection with the cuts from 00 to x(s) and 
— x(s) to —00, x(s) being an arbitrary function with 
x(s)>l. 

The discussions in Sees. I I and I I I can also be applied 
to the amplitude at an angle 6(s) which is dependent on 
s. This application will be made in Sec. IV. The only 
change in Eqs. (13) and (14) will be to replace / by 
/ sin0(s). The result is that T[s, cos0(s)] has no signifi
cant contribution from ai(s) for l> const. In2,?/sin0(,?). 

Throughout this paper, we do not use the unitarity 
condition. However, in order to fix an upper bound of 
T\_s, cos0(s)] using the results of this paper, it would be 
necessary to use the unitarity bound for the ai(s) with 
/ < const. ln2Vsin0 (s). 

Finally in Sec. V we briefly discuss the forward and 
backward peaks and it will be proved that the right-
(left-) hand cut contributes only to the forward (back
ward) peak and not to the backward (forward) peak. 

Although we only discuss the scattering amplitude for 
two scalar particles, it is easily seen that these con
siderations can be generalized for the scattering of 
particles with spin by using the technique introduced in 
a previous note.6 

II. PROOF BASED ON THE MANDELSTAM 
REPRESENTATION 

In this section we shall prove the inequality (12) on 
the basis of the Mandelstam representation. The logic 
of proof is quite similar to that of KLM. According to 
KLM, we consider the function 

G(s,z)=f:(2l+l)al(s)zl. • (17) 
1=0 

We have the following relations between T(s,z) and 

the inequality (10). The inequality (9) is necessary for the proof 
of the inequality (12), but the inequality (10) is not. If we would 
content ourselves with a weaker condition for the inequality (10) 
the ln2^ dependence of h might be replaced by smaller power of Ins 
by using another function as fi(s). fi(s) in Eq. (13) may not be the 
best one for our purposes but is only an example. Therefore, ln2s 
might possibly be replaced by a smaller value without weakening 
the inequality (10) by taking another fi(s). 

6 K. Yamamoto, Nuovo Cimento 27, 1277 (1963). 
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FIG. 1. Circular arcs Ci, C2, 
and C3. 

G(s,z): 

T(s,z)- -— I G [ > , z + ( z 2 - l ) 1 / 2 c o s f ] * , (18) 

! -,+(,2-1)1/2 G(s,z')dz' 

~mJz-^-v>^ ( l - 2 z 2 ' + z ' 2 ) 1 ' 2 ' 
1 ( l - z 2 ) r ( ^ , s ' ) ^ ' r1 (.1—z^jr 

7_i ( l - 2 z z ' ( l - 2zz '+z 2 ) 3 ' 2 

(19) 

(20) 

We assume that T(s,z) is analytic in the z plane except 
for cuts from 00 to x{s) and — x(s) to — 00, #(s) being an 
arbitrary function with x(s)>l. Then G(s,z) is analytic 
in the z plane except for cuts from 00 to x+ (x2—1)1/2 

and —x— (x2—1)1/2 to — 00. 
The following theorem7 quoted by KLM is useful for 

our discussion. In the upper half complex z plane, draw 
the following three circular arcs Ci, C2, and Cz cutting 
the real axis at ± ( 1 —e) (see Fig. 1). C\ is an arc 
centered at the origin. C2 is an arc passing through the 
point z=eie°. C3 is an arc outside C2 and has at least a 
finite angle of intersection <pi with C%. The intersection 
angle <p2 between C\ and Ci is 

tan<£2 = -
e ( l - e / 2 ) 

sin#o(l — e) 
(21) 

Now let \f/(z) be an analytic function defined in a domain 
bounded by the two arcs G and Cz. Then the upper 
bound of \\p(z) | on C2 is 

M 2 = M i ^ ^ ^ ^ M 2<p2^<pl+<p2^ (22) 

where Mi is the upper bound of \\p(z) | on C\\ Applying 
this theorem to G(s,z), KLM have obtained the 
inequality (1). 

We shall apply the above theorem to the function 
defined by 

Gu(s,z)= £ (2l+l)oi(s)ll-fi(s)lzl (23) 

(24) 

Between Gu(s,z) and Tu(s,z), there is the relation 

1 ^+(^2-i)1/2 Gu{s,zf)dzf 

Tu(s,z) = — / - . 
iri iz_(^_i)i/2 (1 — 2zz'+z'2) 

7 Instead of this theorem, we can use Hadamard's three-circles 
theorem [see, for example, J. E. Littlewood, Theory of Functions 
(Oxford University Press, London, 1944), p. 113], as was used 
by T. Kinoshita for the derivation of the inequality (1). T. 
Kinoshita, Lecture Note at the Internationale Universitatswoche 
fur Kernphysik at Schladming, Austria, 1963 (unpublished). 

As will be proved in Appendix A, Gu(s,z) is analytic in 
the domain limited by Ci and Cz provided that e and 
1 — costfo are finite, and Mz for Gu(s,z) is 

Mz=const.sP l n 2 + ^ , (25) 

where const, and NA are finite numbers which depend 
only on T(s,z). Mi for Gu(s,z) will be estimated in 
Appendix B and the result is 

M1= const. (ln8*)r-[« in(i-*)]1/2+^5 (26) 

for a sufficiently large N& which depends only on 
T(s,z). Therefore, apart from unimportant factors 

lnM2 (-Z-a\n(l-e)y!*+Nby 
<Pi 

+ G3ln2+i\r4> 

<Pl+<P2 

<P2 
Ins. (27) 

<Pl+<P2> 

From Eq. (24) we have, for cos0o;£cos0^ — cosflo, 

\Tu(s, cos0)| < 
T J 0 

1 Gu(s,rei9)dr 4 
<-M2, (28) 

( 1 - f ) 1/2 

since M2 is also the maximum of Gu(s,z) between C\ and 
C2. Thus the inequality (12) becomes 

( [ - a l n ( l - e ) ] ^ - i V 5 ) -
<Pi 

<Pl+<f2 

•(fi\n2+N,)-
<P2 

->N. (29) 
<Pl+<P2 

For fixed value of N} Niy m, cos0o, e, <pi and 0, we can 
take a large enough to satisfy the inequalities (15) and 
(29). Next we can take m' large enough to satisfy the 
inequality (16). 

The above discussion is sufficient to prove the exist
ence of a function fi(s) having the four properties (1), 
(2), (3), and the property described by the inequal
ity (12). 

III. PROOF BASED ON ANALYTICITY IN D 

In this section we shall show that for proof of the 
inequality (12) it is sufficient to assume analyticity only 
in the domain D which was defined at the end of Sec. I. 
Using the Cauchy integral we shall divide T(s,z) in two 
parts Ti(s,z) and T2(s,z) where 

and 

Ti(s,zh LI T{s,z')dz' 

2-itijCi z'—z 

1 r T(sz')dz' 

2wi J a z'—z 

(30) 

(31) 

where d plus C5 form the boundary of D and C5 is the 
part of the boundary along the cuts. This division is 
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useful because T2(s,z) is analytic except for the short 
cuts. Consider the partial-wave expansion of Ti(s,z) 
and T2(s,z): 

T1(s,z)=f:(2l+l)a/(s)Pl(z), (32) 
1=0 

and 

T2(s,z)=t(2l+l)al"(s)Pl(z). (33) 

From the definition (30), we have3 

\ai,(s)\<const.sN^a+(a2-l)^']~l, (34) 

where a is the length of the semimajor axis of the largest 
ellipse with foci at z=db l which we can draw without 
intersecting C4. We have also assumed that T(s,z) is 
bounded by sN& on C4. 

Consider Tlu(s,z) and T2u(s,z) defined by 

Tiu(s,z)= £ (2l+l)ai^(s)ll-Ms)2Pi(z). (35) 
1=0 

Then 
Tu(s,z) = Tlu(s,z)+T2u(s,z). (36) 

We shall obtain an upper bound on Tu(s,z) by treating 
Tiu(s,z) and T2u(s,z) separately. First, using the in
equality (34) and Eq. (35) we obtain an upper bound of 
Tiu(syz) in cos0o^z^ — cos0o: 

| r l w M | < c o n s t . ^ [ l - / , i n s _ i W ] £ (2/+1) 
1=0 

X [ a + ( a 2 - l ) 1 / 2 ] - z + c o n s t . ^ 6 f : (2/+2x liw+1) 
z=o 

Xla+(a2-l)ll2^-l-xlns<const.(lns)sN&-a/* 

+const. ( l iw)^ 8 [ a+ (a2-1) 1 / 2 ] - * l n * 

+con$t.sN*[a+(a2-iy!2~yxln8. (37) 

Putting x—{a/ln[a+(#2—1)1 /2]}1 /2 , we have 

| r l w (5 , s ) |<cons t . ( lm)^-^ / l n ^+^ 2 - 1 > 1 / 2 ^ 1 / 2 , (38) 

where the constant coefficients are finite so long as a— 1 
and a are finite. 

Next we investigate the upper bound of | T2u(s,z) | in 
cos0o^2^ — cos0o. From definition (31), T(s,z) is ana
lytic except for short cuts near z= zb 1. We can apply the 
results of the Sec. I I here, since in Sec. I I we have as
sumed only the analyticity of T(s,z) except for cuts 
which in that case reached to infinity and did not use the 
unitarity condition. Therefore, it is obvious that by 
choosing a sufficiently large we can make 

\T2u(s,z)\<srN (39) 

in cos0o^ z^ — COS0O. From Eq. (36) and the inequalities 
(38) and (39), it may be seen that the sufficient condi

tion for inequality (12) is the inequality 

[ a / l n ( 0 + ( a 2 - l)i/2)]i/2__7vr
6>iV. (40) 

This inequality will hold for sufficiently large a. 

IV. SMALL ANGLE SCATTERING 

The discussions in the two previous sections for finite 
angle scattering can also be applied to the scattering 
amplitude at angles dependent upon s. Results of 
interest may be obtained for angles converging with 
energy to 0 or w. For the extension we define a new 
fi(s) as 

r —a \n2s -]$lns 

/ i (* )= 1 - exp (41) 
L (l+l)sind(s)J 

instead of (13). h and h in the inequalities (9), (10) and 
Eq. (14), therefore, change into 

/ i=mlnVsin0CO, (42) 
and 

/2=wMnysin0Cy). (43) 

The proof of the inequality (12) is quite similar to the 
previous one. The main changes are: (a) do is not finite 
but proportional to sin0(,y), (b) e is not finite but pro
portional to sin0(^) so that <pi and <p2 are finite, and 
(c) a in Sees. I I , I I I , and Appendices A, B must be 
replaced by a/sm.6(s). There are also other small 
changes. For example some coefficients in Sees. I I , I I I , 
and Appendices A, B go to infinity as s increases. These 
changes do not affect the proof of the inequality (12), 
however, since they can be overcome by choosing a and 
m' sufficiently large. Thus we obtain the result that 
partial waves for / larger than const. \T?S/$U\Q(S) do not 
contribute to T£s, cos0 (,?)]. 

V. FORWARD AND BACKWARD PEAKS 

Finally we shall briefly discuss the forward and the 
backward peaks and prove that the right- (left-) hand 
cut contributes only to the forward (backward) peak 
and not to the backward (forward) peak. We shall show 
this only for the left-hand cut, since exactly the same 
considerations hold for the right-hand cut. We shall 
denote the integration along the left-hand cut in Eq. 
(31) by T2

L(s,z). As is shown in Appendix C, if aiL(s) is 
the partial-wave amplitude of r2

L(^,s), 

G2u
L(s,z)= £ a , * ( * ) [ l - / , ( j ) > ' (44) 

is analytic in the domain in which | s | is finite and 
7T—0o/^>args> — w+do/n for sufficiently large n. 

Now consider the three circular arcs C / , C2\ and C% 
in the right-half complex plane obtained by rotating Ci, 
C2, and C% of Sec. I I through \ir about the origin in the 
clockwise direction. We can then apply the theorem used 
in Sec. I I to G2u

L(s7z), since as will be shown in Appendix 
C t h e maxima MiLj M%L of G2u

L(s}z) on C / and C% can 
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be expressed in a way similar to those for Gu(s,z) on C\ 
and Ci. Thus we can conclude that for | z | ^ 1 and 
w—6o/n>SLrgz> —ir+do/n 

\G2u
L(s,z)\<s-N (45) 

for an arbitrary N if a and w! are sufficiently large. 
However, the relation between Giu

L{s,z) and 

T2u
L(s,z)= t (2l+l)ai

L(s)ll-fi(s)-]Pi(z) (46) 
z=o 

IS 

2UL(S,Z)= / 

Jo 
G2u

LZs, z + ( s 2 - l ) 1 / 2 cos / ]* . (47) 

Therefore, r 2 w
L («?,£) has no forward peak. This means 

that T2
L{s,z) has no forward peak because the contribu

tion to this peak must come only from the partial-wave 
amplitudes in the upper sum. The reason is that the 
forward amplitude increases more rapidly than the 
amplitude in the lower summation is compelled to by 
partial-wave unitarity. If there is a backward peak, the 
same argument holds. 

ACKNOWLEDGMENTS 

The author would like to thank Professor Y. Nambu, 
Dr. A. P. Balachandran, Dr. P. G. O. Freund, and Dr. 
F. von Hippel for helpful discussions. 

APPENDIX A: ANALYTICITY AND UPPER 
BOUND FOR Gu(s,z) ON C8 

In order to study the analyticity of GM(syz) in the 
domain limited by Ci, C3 and the upper bound for 
Gu(s,z) on Cz, we need only to discuss the domain 
7T—Oo/n>a,rgz>Oo/n, where n is a large positive number. 
This is true because for sufficiently large n outside 
ir—6o/n>a,rgz>6o/n, \z\<l (see Fig. 1). For | z | < l , 
the analyticity of Gu{s,z) is obvious because the power-
series expansion converges explicitly for any s because, 
by analyticity, the ai(s) are bounded by 

|0iOO|<**» (48) 

for some sufficiently large N&. To prove the analyticity 
and bound of Gu(s,z) in ir—6o/n>Sirgz>do/n) it is 
necessary to use analyticity of ai(s). The n' times 
subtracted dispersion relation for T(s,z) at fixed s is 

P(*,*0 1 r" pfo 
T(s,z) = -zn' / dz' 

i r r P'(sr 
+~zn / dz' 

7T J xi8) Z'n,(z' 

PW) 
f+z) w p - i 

From Eq. (49), we have for l^n'8 

Gi(s) = bi(s)+(-ybi'(s), 
8 M. Froissart, Phys. Rev. 123, 1053 (1961). 

1 n'-l 
- E PPZp- (49) 

(50) 

where 

with 
7 &<«=-

*(*,r)= f 
J x 

1 cr(5,f) 
# -

«-+1'n p(s,z') 
dz' . 

(51) 

(52) 
x(s) 

This is true for b/(s) also. From Eq. (50) we see that 
bi(s) and b/(s) are analytic in the complex / plane for 
Rel>nf for all physical values of s. Using this ana
lyticity, we can rewrite Gu(s,z) for w—do/n>axgz>do/n 
as 

Gu(s,z)=P(s,z)+I(s,z), (53) 
where 

P(*,z)= E (2/+l)a,WCl-/iW>1, (54) 

and 

^ /»n'-fH-»°° 
1(5,8) = - / dl 

I /•n'-t-a-r' 

'2) = 2i 
(21+1)11-f ,(s)Tb i(s) (e-«zy+bl'(s)z'2 

X-
siiwr/ 

• (55) 

In Eq. (55) we have used the Watson-Sommerfeld 
transformation. We shall only study the analyticity and 
the upper bound of I(s,z) since these properties are 
obvious for P(s,z). From Eq. (55) it is clear that I(s,z) 
is analytic in the domain in which \z\ is finite and 
7T—6o/n>Sirgz>6o/n. 

We estimate the upper bound of I(s,z) on C3 by using 
Eq. (55). For arbitrary I satisfying l=nf-\-\-\-i% we 
have from Eq. (13) 

| . 1 - / « ( * ) | < 2 ' * ' , (56) 

and we also have from Eq. (51)9 

Max[|*iWI,l*i ,W|]<Uln '^4 (57) 

for sufficiently large N^ Therefore, for z on C% in 
7r—Bo/n>Sirgz>do/n and for l=nf-\-\Jrit\ 

\bx($){rir%)l+b{{?)%l\ 
<\l\ n V 4 | z| »'+* expfa-dov/n). (58) 

Substituting the inequalities (56), (57), and (58) in 
Eq. (55), we have 

with 
|J(v)l<*l*|n'+1/2*'***•**, (59) 

; = 4 / dri\n'+l+iri\\n'+i+iri\ n' exp( -0w/w) . (60) 
Jo 

9 Practically, as we can see from the discussion in Sec. Il l , it is 
sufficient to consider the case where p(s,z) in Eqs. (49) and (52) is 
zero except for a finite range of z. 
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APPENDIX B: UPPER BOUND FOR 
Gu(s,z) IN |*| <1 

In this Appendix we estimate the upper bound of 
Gu(syz) in | z . | < l . Using the inequality (48) and Eq. 
(23), for |z | < 1 , we have 

\Gu(s,z)\ < ^ [ W * l n S - l ( * ) ] ' £ W l ) 

+sN*Y, (2l+2x\ns+l)\z\l+x1^, (61) 

< const. (]n*s)sN*-°lx+ const. \z\x lnssN5 

+const.2* lnssNb h u . (62) 

Putting x= [—a/In| z| ] 1 / 2 and 
inequality (26). 

z I = 1 — e, we obtain the 

APPENDIX C: ANALYTICITY AND THE 
UPPER BOUND FOR G2u

L(stz) 

The difference between G2uL(s,z) and G2u(s,z) essen
tial for this argument is the absence of the right-hand 
cut in G2uL(s,z). By virtue of this difference, we have 
only b/(s) and no term corresponding to bi(s) in Eq. 
(55). Therefore it is obvious that G2U

L(s,z) is analytic in 
the domain in which \z\ is finite and x—0o/^>argz 
> —T—do/n. By the procedure used for the calculation 
of the bounds for Gu(s,z) in Appendices A and B, we can 
obtain similar upper bounds for G2uL(s,z) on C\ and Cs\ 

P H Y S I C A L R E V I E W V O L U M E 1 3 4 , N U M B E R 3 B 1 1 M A Y 1 9 6 4 

Overlapping Resonances in Dispersion Theory* 
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The Khuri-Treiman dispersion representation is applied to the discussion of overlapping resonances 
among particles in production and decay final states. The kernel of the dynamical equation following from 
the Khuri-Treiman representation has branch points overlapping the integration contour, but recently 
reported work permits us to select the correct branch of the kernel. We thus eliminate all restrictions on the 
masses of the final-state particles or strengths of the resonances. An iteration procedure is developed for the 
solution of the dynamical equation when three spinless particles are present in the final state. There is no 
restriction on the angular momentum of the resonances, but for simplicity only 5-wave resonances are 
considered here. Plausibility arguments are given which indicate that for narrow resonances the once-
iterated approximation to the solution is a good approximation. A detailed study of all higher approximations 
supports this assertion. In the once-iterated approximation, one finds a branch point on the second sheet 
of the transition amplitude which may cause a characteristic variation of the amplitude near the low-energy 
boundaries of the physical region. This variation is studied quantitatively for the kinematically favorable 
reaction N+N —> iV+iV+7r, and is found to be of negligible importance. The suppression of the variation 
is related to the threshold behavior of two-particle scattering amplitudes. 

I. INTRODUCTION 

IN this paper we discuss the role of resonant final-state 
interactions in production and decay reactions 

leading to three-particle final states. In particular, we 
study what happens when two of the three outgoing 
particles are identical and either one (or both) scatters 
resonantly with the third. Following Peierls and Tarski,1 

we call this the case of overlapping resonances. As is 
well known, this class of reactions includes cases of 
great current interest, for instance, 

K+N->Y*+ C+7T + 7T\ 

+ TT+TT/' 

* This work is supported in part through funds provided by the 
Atomic Energy Commission under Contract AT(30-1)2098. Part 
of a thesis submitted to Princeton University in candidacy for the 
degree of Doctor of Philosophy, May 1963. 

t National Science Foundation Predoctoral Fellow, 1962-1963. 
i R. F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963). 

7T + 7V-

N+N-
>7V* + 7T- 'N+T+TT, 

where the TT-TT resonances are excluded kinematically. 
The restrictions to two identical particles and only two 
resonances are made for convenience. The methods we 
use can be extended to study W-TT resonances in the 
reactions above, or to study 

K+N-

N+N-

/K*+N\ 

\N*+K/ 

/ P + T T \ 

•N+K+w, 

- 7T+7T+X. 

The dynamics of our treatment are provided by the 
Khuri-Treiman2 (KT) dispersion representation of a 

2N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960). 


